STAT 2593

Lecture 002 - Pictorial and Tabular Methods in Statistics

Dylan Spicker

Pictorial and Tabular Methods in Statistics

Learning Objectives

1. Define and characterize the distribution of a dataset.
2. Understand sample notation.
3. Explain the purposes of visualization.
4. Interpret and explain stem-and-leaf plots, dotplots, and histograms.

The Central Problem

Raw data are effectively useless for interpretation.

'id", "ht", "age", "baseht", "baseage","logfev1"

1. $26009004768372,9.3415002822876,1.20000004768372,9.3415002822876,0.215110003948212$ $1,1.26000004768372,9.3415002822876,1.20000004768372,9.3415002822876,0.215110003948212$
$1,1.27999997138977,10.3929004659189,1.20000004768372,9.3415002822876,0.371560007333755$ $1,1.33000004291534,11.4524002075195,1.20000064768372,9.3415002822876,0.488579988479614$ $1,1.41999995708466,12.460000038147,1.20000004768372,9.3415002822876,0.751420021057129$ $1,1.48000001907349,13.4181995391846,1.20000004768372,9.3415002822876,0.832910001277924$ $1,1.5,15.4743003845215,1.20000004768372,9.3415002822876,0.892000019550323$
$1,1.51999998092651,16.3722991943359,1.20000004768372,9.3415002822876,0.871290028095245$,1.12999999523163,6.58729982376999,1.12999999523163,6.58729982376099,0.307480097419049 $2,1.19000005722046,7.6496006289917,1.12999999523163,6.58729982376099,0.350659996271133$ $2,1.49 \theta \theta 日 \theta 日 \Theta 953674,12.7391996383667,1.12999999523163,6.58729982376 e 99,0.756120026111603$ 2,1.52999997138977,13.77410e3036499, 1.12999999523163,6.58729982376e99,0.867100e0038147 $2,1.54999995231628,14.6940002441406,1.12999999523163,6.58729982376 e 99,1.04732060827789$ 2,1.55999994277954, 15.8219995498657,1.12999999523163,6.58729982376099,1.15373003482819 2,1.57000005245209,16.6679992675781,1.12999999523163,6.58729982376099,0.924260020256042 $2,1.57000005245209,17.631799697876,1.12999999523163,6.58729982376099,1.13461995124817$ 3,1.17999994754791, 6.91309976577759,1.17999994754791,6.91309976577759,0.431780010461807 $3,1.23000001907349,7.9753999710083,1.17999994754791,6.91309976577759,0.385259985923767$ $3,1.29999995231628,8.9665002822876,1.17999994754791,6.91309976577759,0.598839998245239$ 3,1.35000002384186,9.98770046234131,1.17999994754791,6.91309976577759,0.751420021057129 3,1.47000002851023,11.6773060717163,1.17999994754791,6.91309976577759,0.96697998046875 3,1.57000005245269,13.6677995681763,1.17999994754791,6.91309976577759,0.896089971065521 $3,1.5900000333786,14.1027002334595,1.17999994754791,6.91309976577759,1.01884996891022$ 3,1.60000002384186,15.6801000595693,1.17999994754791,6.91309976577759,1.105260014534 $3,1.60000002384186,16.0163993835449,1.17999994754791,6.91309976577759,1.08519005775452$ 1.14999997615814,6.75979905727539,1.14999997615814,6.75979995727539,0.0582690990213219 $4,1.21000003814697,7.82200002670288,1.14999997615814,6.75979995727539,0.18231999874115$ $4,1.25999999046326,8.81309986114502,1.14999997615814,6.75979995727539,0.277630001306534$ $4,1.25999999646326,8.81309986114502,1.14999997615814,6.75979995727539,0.277636601366534$,1.38999998569489,10.923999786377,1.14999997615814,6.75979995727539,0.576610028743744 $4,1.46000003814697,11.9315996170644,1.14999997615814,6.75979995727539,0.672940015792847$ $4,1.53999996185303,12.9117002487183,1.14999997615814,6.75979995727539,0.722710013389587$ $4,1.5900000333786,13.9465999603271,1.14999997615814,6.75979995727539,1.62244997024536$ 4,1.66009002384186,14.8664999008179,1.14999997615814,6.75979995727539,1.03673994541168 $4,1.62999999523163,17.7877998352051,1.14999997615814,6.75979995727539,1.1878399848938$ $5,1.11000001430511,6.50239992141724,1.11000001430511,6.50239992141724,0.029559999704361$ 5,1.14999997615814,7.56470012664795,1.11000001430511,6.50239992141724,0.113329999148846 $5,1.51999998092651,13.733099937439,1.11000001430511,6.50239992141724,0.896089971065521$ $5,1.53999996185303,14.7049999237061,1.11000001430511,6.50239992141724,0.862890005111694$ $5,1.54999995231628,15.5866003036499,1.11000001430511,6.50239992141724,0.955510020256042$ $5,1.54999995231628,16.6460990905762,1.11000001430511,6.50239992141724,0.924260020256042$ $5,1.55999994277954,17.5221996307373,1.11000001430511,6.50239992141724,0.832910691277924$ 6,1.24000000053674, 6. $80940023422241,1.24000000953674,6.89040023422241,0.262360006570816$ $6,1.20909095231628,7.96169096251597,1.24900009953674,6.89949923422241,0.47622099548012$ $6,1.36008001430511,8.98560047149658,1.24000080953674,6.89940023422241,0.565310001373291$ 6,1.4699999666214,9.97399997711182,1.24e0000e953674,6.89940023422241,0.712949991226196 $6,1.47000002861023,11.66369972229,1.24000000953674,6.89940023422241,0.774730026721954$ $6,1.55999994277954,12.0712003787886,1.24000000953674,6.89940023422241,0.900160014629364$

The Solution

We use graphical displays to summarize the useful information instead.

Distributions

The distribution of a dataset describes the possible values that are in a sample, and the relative frequency of those values.

Notation

- Our data consist of n observations.
- Each observation is denoted with a lowercase x.
- We use subscripts to enumerate sample observations, x_{i}, for $i=1, \ldots, n$.

Goals for Visualizations

1. Identify what is typical in the data.

Goals for Visualizations

1. Identify what is typical in the data.
2. Identify the spread of the data.

Goals for Visualizations

1. Identify what is typical in the data.
2. Identify the spread of the data.
3. Determine if there are any gaps in the data.

Goals for Visualizations

1. Identify what is typical in the data.
2. Identify the spread of the data.
3. Determine if there are any gaps in the data.
4. Identify the shape of the distribution of the data.

Goals for Visualizations

1. Identify what is typical in the data.
2. Identify the spread of the data.
3. Determine if there are any gaps in the data.
4. Identify the shape of the distribution of the data.
5. Identify peaks in the data.

Goals for Visualizations

1. Identify what is typical in the data.
2. Identify the spread of the data.
3. Determine if there are any gaps in the data.
4. Identify the shape of the distribution of the data.
5. Identify peaks in the data.
6. Determine whether there are any outliers.

Stem-and-Leaf Plots

$2,17,14,35,37,44,2,47,41,35,50$, 40, 16, 20, 22, 22, 23, 9, 23, 23, 48, 34, 8, 26, 11, 4, 49, 11, 39, 34, 29, 4, 4, 35, $6,3,5,40,28,40,45,27,5,37,1,27$, $16,20,19,50,10,50,19,20,28,45$, 40, 4, 32, 25
$2,17,14,35,37,44,2,47,41,35,50,40,16,20,22,22,23,9,23,23,48,34,8,26$, $11,4,49,11,39,34,29,4,4,35,6,3,5,40,28,40,45,27,5,37,1,27,16,20,19$, $50,10,50,19,20,28,45,40,4,32,25$

The decimal point is 1 digit(s) to the right of the \mid
0 | 12234444
0 | 55689
1 | 0114
1 | 66799
2 | 00022333
2 | 5677889
3 | 244
3 | 555779
4 | 000014
4 | 55789
$5 \mid 000$

Constructing Stem-and-Leaf Plots

1. Identify the stem (leading digit) and leaves (remaining digits)

Constructing Stem-and-Leaf Plots

1. Identify the stem (leading digit) and leaves (remaining digits)
2. Place the stems from smallest to largest in a vertical column

Constructing Stem-and-Leaf Plots

1. Identify the stem (leading digit) and leaves (remaining digits)
2. Place the stems from smallest to largest in a vertical column
3. Place each leaf with the corresponding stem in ascending order

Constructing Stem-and-Leaf Plots

1. Identify the stem (leading digit) and leaves (remaining digits)
2. Place the stems from smallest to largest in a vertical column
3. Place each leaf with the corresponding stem in ascending order
4. Indicate the units (where is the decimal point?)

Dot Plots

$2,51,17,56,14,35,37,44,2,47,41,35,50,40,16,20,22,22,23,9,23,23,48$, $34,8,26,56,11,4,58,58,49,11,60,39,34,29,4,4,55,35,52,6,3,5,40,28,40$, $45,59,58,27,5,37,1,27,55,16,20,19,50,10,50,19,20,28,55,54,45,40,57$, $54,4,32,59,25,35,60,27,28,4,32,50,55,47,31,49,2,22,32,38,18,17,40$, $35,34,16,49,40,36$

Constructing Dot Plots

1. Plot all observations on the vertical axis at their value.

Constructing Dot Plots

1. Plot all observations on the vertical axis at their value.
2. Stack dots for repeated observations.

Histograms

- Histograms represent the frequency distribution using bar charts.

Histograms

- Histograms represent the frequency distribution using bar charts.
- For discrete variables, we use each category, and count the observations in each category.

Histograms

- Histograms represent the frequency distribution using bar charts.
- For discrete variables, we use each category, and count the observations in each category.
- For continuous variables, we bin the observations, and count the observations in each bin.

Histograms

- Histograms represent the frequency distribution using bar charts.
- For discrete variables, we use each category, and count the observations in each category.
- For continuous variables, we bin the observations, and count the observations in each bin.
- Can also use the relative frequency, which is given by

$$
\text { relative frequency }=\frac{\text { frequency }}{\text { total number of observations }} .
$$

Histograms

Considerations for Histograms

- Classes should be the same width.

Considerations for Histograms

- Classes should be the same width.
- Classes should not overlap.

Considerations for Histograms

- Classes should be the same width.
- Classes should not overlap.
- Classes should include all possible values.

Histograms

	Bins Counts Relative Frequency		
1	$30-35$	11	0.03216374
2	$35-40$	89	0.26023392
3	$40-45$	77	0.22514620
4	$45-50$	113	0.33040936
5	$50-55$	47	0.13742690
6	$55-60$	5	0.01461988

Histograms

What to Look for in a Histogram

- Shape, including modality, symmetry, and skewness

What to Look for in a Histogram

- Shape, including modality, symmetry, and skewness
- How many peaks (modes) are there: one is unimodal, two is bimodal, three or more is multimodal

What to Look for in a Histogram

- Shape, including modality, symmetry, and skewness
- How many peaks (modes) are there: one is unimodal, two is bimodal, three or more is multimodal
- Does the distribution look like a mirror image? If not, it is skewed.

What to Look for in a Histogram

- Shape, including modality, symmetry, and skewness
- How many peaks (modes) are there: one is unimodal, two is bimodal, three or more is multimodal
- Does the distribution look like a mirror image? If not, it is skewed.
- Left (or negative) skew has a tail pointing left; right (or positive) skew has a tail pointing right.

What to Look for in a Histogram

- Shape, including modality, symmetry, and skewness
- How many peaks (modes) are there: one is unimodal, two is bimodal, three or more is multimodal
- Does the distribution look like a mirror image? If not, it is skewed.
- Left (or negative) skew has a tail pointing left; right (or positive) skew has a tail pointing right.
- The centre of the distribution

What to Look for in a Histogram

- Shape, including modality, symmetry, and skewness
- How many peaks (modes) are there: one is unimodal, two is bimodal, three or more is multimodal
- Does the distribution look like a mirror image? If not, it is skewed.
- Left (or negative) skew has a tail pointing left; right (or positive) skew has a tail pointing right.
- The centre of the distribution
- The spread of the distribution

What to Look for in a Histogram

- Shape, including modality, symmetry, and skewness
- How many peaks (modes) are there: one is unimodal, two is bimodal, three or more is multimodal
- Does the distribution look like a mirror image? If not, it is skewed.
- Left (or negative) skew has a tail pointing left; right (or positive) skew has a tail pointing right.
- The centre of the distribution
- The spread of the distribution
- Outliers or deviations from the general pattern

Examples

Examples

Examples

Examples

Examples

Histogram Example 5

Histograms: Comparing Distributions

Bar Charts: Histograms for Categorical Data

Summary

- Raw data are difficult to interpret on their own.
- Visualizations can help display the character of a distribution.
- Stem-and-leaf plots, dot plots, and histograms are all useful for quantitative variables.
- Histograms (as bar plots) can be used for categorical variables.

