STAT 2593

Lecture 002 - Pictorial and Tabular Methods in Statistics

Dylan Spicker

Pictorial and Tabular Methods in Statistics

Learning Objectives

1. Define and characterize the distribution of a dataset.

2. Understand sample notation.

- 3. Explain the purposes of visualization.
- 4. Interpret and explain stem-and-leaf plots, dotplots, and histograms.

The Central Problem

Raw data are effectively useless for interpretation.

	"id","ht","age","baseht","baseage","logfev1"
	1,1.20000004768372,9.3415002822876,1.20000004768372,9.3415002822876,0.215110003948212
	1, 1.27999997138977, 10.3929004669189, 1.20000004768372, 9.3415002822876, 0.371560007333755
	1,1.33000004291534,11.4524002075195,1.20000004768372,9.3415002822876,0.488579988479614
	1,1.41999995708466,12.460000038147,1.20000004768372,9.3415002822876,0.751420021057129
	1, 1.48000001907349, 13.4181995391846, 1.20000004768372, 9.3415002822876, 0.832910001277924
	1,1.5,15.4743003845215,1.20000004768372,9.3415002822876,0.892000019550323
	1, 1.51999998092651, 16.3722991943359, 1.20000004768372, 9.3415002822876, 0.871290028095245
	2, 1.12999999523163, 6.58729982376099, 1.12999999523163, 6.58729982376099, 0.307480007410049999999999999999999999999999999
10	2, 1.19000005722046, 7.6496000289917, 1.12999999523163, 6.58729982376099, 0.350659996271133
	2,1.49000000953674,12.7391996383667,1.12999999523163,6.58729982376099,0.756120026111603
	2, 1.52999997138977, 13.7741003036499, 1.12999999523163, 6.58729982376099, 0.86710000038147
	2, 1, 54999995231628, 14.6940002441406, 1.12999999523163, 6.58729982376099, 1.04732000827789
14	2,1.55999994277954,15.8219995498657,1.12999999523163,6.58729982376099,1.15373003482819
	2, 1.57000005245209, 16.6679992675781, 1.12999999523163, 6.58729982376099, 0.92426002025604200000000000000000000000000
16	2, 1.57000005245209, 17.631799697876, 1.12999999523163, 6.58729982376099, 1.13461995124817
	3,1.17999994754791,6.91309976577759,1.17999994754791,6.91309976577759,0.431780010461807
18	3, 1.23000001907349, 7.9753999710083, 1.17999994754791, 6.91309976577759, 0.385259985923767
19	3, 1.29999995231628, 8.9665002822876, 1.17999994754791, 6.91309976577759, 0.598839998245239
20	3,1.35000002384186,9.98770046234131,1.17999994754791,6.91309976577759,0.751420021057129
21	3, 1.47000002861023, 11.0773000717163, 1.17999994754791, 6.91309976577759, 0.96697998046875
22	3,1.57000005245209,13.0677995681763,1.17999994754791,6.91309976577759,0.896089971065521
23	3, 1.5900000333786, 14.1027002334595, 1.17999994754791, 6.91309976577759, 1.01884996891022
24	3, 1.60000002384186, 15.0801000595093, 1.17999994754791, 6.91309976577759, 1.105260014534
25	3, 1.60000002384186, 16.0163993835449, 1.17999994754791, 6.91309976577759, 1.08519005775452
26	4,1.14999997615814,6.75979995727539,1.14999997615814,6.75979995727539,0.058269999921321
27	4,1.21000003814697,7.82200002670288,1.14999997615814,6.75979995727539,0.18231999874115
28	4,1.25999999046326,8.81309986114502,1.14999997615814,6.75979995727539,0.277630001306534
29	4,1.30999994277954,9.83440017700195,1.14999997615814,6.75979995727539,0.444689989089966
30	4,1.38999998569489,10.923999786377,1.14999997615814,6.75979995727539,0.576610028743744
31	4,1.46000003814697,11.9315996170044,1.14999997615814,6.75979995727539,0.672940015792847
32	4,1.53999996185303,12.9117002487183,1.14999997615814,6.75979995727539,0.722710013389587
33	4,1.5900000333786,13.9465999603271,1.14999997615814,6.75979995727539,1.02244997024536
34	4,1.60000002384186,14.8664999008179,1.14999997615814,6.75979995727539,1.03673994541168
35	4,1.62999999523163,17.7877998352051,1.149999997615814,6.75979995727539,1.1878399848938
36	5,1.11000001430511,6.50239992141724,1.110000001430511,6.50239992141724,0.029559999704361
37	5,1.14999997615814,7.56470012664795,1.110000001430511,6.50239992141724,0.113329999148846
38	5,1.51999998092651,13.733099937439,1.11000001430511,6.50239992141724,0.896089971065521
39	5,1.53999996185303,14.7049999237061,1.110000001430511,6.50239992141724,0.862890005111694
40	5,1.54999995231628,15.5866003036499,1.110000001430511,6.50239992141/24,0.955510020256042
41	5,1.54999995231628,16.6460990905/62,1.110000001430511,6.50239992141/24,0.924260020250042
42	5,1.559999942//954,1/.522199630/3/3,1.110000001430511,6.50239992141/24,0.8329100012//924
43	6,1.24000000953674,6.89940023422241,1.24000000953674,6.89940023422241,0.262360006570816
44	6,1.29999995231628,7.96169996261597,1.24000000953674,6.89940023422241,0.47622999548912
45	0,1.30000001430511,8.98500047149058,1.24000000953674,6.89940023422241,0.565310001373291
40	0,1.4099999000214,9.9/39999//11182,1.24000009536/4,0.89940023422241,0./12949991226196
47	0,1.4/000002001025,11.003099/2229,1.240000009530/4,0.89940023422241,0.//4/30026/21954
48	0,1.33999994277934,12.0712003707886,1.24000000953674,6.89940023422241,0.900160014529364

The Solution

We use **graphical displays** to summarize the useful information instead.

The **distribution** of a dataset describes the possible values that are in a sample, and the relative frequency of those values.

▶ Our data consist of *n* observations.

Each observation is denoted with a lowercase x.

We use subscripts to enumerate sample observations, x_i, for i = 1,..., n.

1. Identify what is **typical** in the data.

1. Identify what is typical in the data.

2. Identify the **spread** of the data.

1. Identify what is $\ensuremath{\textbf{typical}}$ in the data.

2. Identify the **spread** of the data.

3. Determine if there are any **gaps** in the data.

- 1. Identify what is $\ensuremath{\textbf{typical}}$ in the data.
- 2. Identify the **spread** of the data.
- 3. Determine if there are any **gaps** in the data.
- 4. Identify the shape of the **distribution** of the data.

- 1. Identify what is $\ensuremath{\textbf{typical}}$ in the data.
- 2. Identify the **spread** of the data.
- 3. Determine if there are any **gaps** in the data.
- 4. Identify the shape of the **distribution** of the data.
- 5. Identify **peaks** in the data.

- 1. Identify what is $\ensuremath{\textbf{typical}}$ in the data.
- 2. Identify the **spread** of the data.
- 3. Determine if there are any **gaps** in the data.
- 4. Identify the shape of the **distribution** of the data.
- 5. Identify **peaks** in the data.
- 6. Determine whether there are any **outliers**.

Stem-and-Leaf Plots

2, 17, 14, 35, 37, 44, 2, 47, 41, 35, 50, 40, 16, 20, 22, 22, 23, 9, 23, 23, 48, 34, 8, 26, 11, 4, 49, 11, 39, 34, 29, 4, 4, 35. 6. 3. 5. 40, 28, 40, 45, 27, 5, 37, 1, 27, 16, 20, 19, 50, 10, 50, 19, 20, 28, 45. 40, 4, 32, 25

2, 17, 14, 35, 37, 44, 2, 47, 41, 35, 50, 40, 16, 20, 22, 22, 23, 9, 23, 23, 48, 34, 8, 26, 11, 4, 49, 11, 39, 34, 29, 4, 4, 35, 6, 3, 5, 40, 28, 40, 45, 27, 5, 37, 1, 27, 16, 20, 19, 50, 10, 50, 19, 20, 28, 45, 40, 4, 32, 25

The decimal point is 1 digit(s) to the right of the |

- 0 | 12234444
- 0 | 55689
- 1 | 0114
- 1 | 66799
- 2 | 00022333
- 2 | 5677889
- 3 | 244
- 3 | 555779
- 4 | 000014
- 4 | 55789
- 5 | 000

1. Identify the stem (leading digit) and leaves (remaining digits)

1. Identify the stem (leading digit) and leaves (remaining digits)

2. Place the stems from smallest to largest in a vertical column

1. Identify the stem (leading digit) and leaves (remaining digits)

2. Place the stems from smallest to largest in a vertical column

3. Place each leaf with the corresponding stem in ascending order

1. Identify the stem (leading digit) and leaves (remaining digits)

2. Place the stems from smallest to largest in a vertical column

3. Place each leaf with the corresponding stem in ascending order

4. Indicate the units (where is the decimal point?)

Dot Plots

2, 51, 17, 56, 14, 35, 37, 44, 2, 47, 41, 35, 50, 40, 16, 20, 22, 22, 23, 9, 23, 23, 48, 34, 8, 26, 56, 11, 4, 58, 58, 49, 11, 60, 39, 34, 29, 4, 4, 55, 35, 52, 6, 3, 5, 40, 28, 40, 45, 59, 58, 27, 5, 37, 1, 27, 55, 16, 20, 19, 50, 10, 50, 19, 20, 28, 55, 54, 45, 40, 57, 54, 4, 32, 59, 25, 35, 60, 27, 28, 4, 32, 50, 55, 47, 31, 49, 2, 22, 32, 38, 18, 17, 40, 35, 34, 16, 49, 40, 36

1. Plot all observations on the vertical axis at their value.

1. Plot all observations on the vertical axis at their value.

2. Stack dots for repeated observations.

Histograms represent the frequency distribution using bar charts.

- Histograms represent the frequency distribution using bar charts.
- For discrete variables, we use each category, and count the observations in each category.

- Histograms represent the frequency distribution using bar charts.
- For discrete variables, we use each category, and count the observations in each category.
- For continuous variables, we bin the observations, and count the observations in each bin.

- Histograms represent the frequency distribution using bar charts.
- For discrete variables, we use each category, and count the observations in each category.
- For continuous variables, we bin the observations, and count the observations in each bin.
- ► Can also use the **relative frequency**, which is given by

relative frequency
$$= \frac{\text{frequency}}{\text{total number of observations}}$$
.

Considerations for Histograms

Classes should be the same width.

Considerations for Histograms

Classes should be the same width.

Considerations for Histograms

Classes should be the same width.

Classes should not overlap.

Classes should include all possible values.

		Bi	ins	Counts	Relative Frequency
1	30	-	35	11	0.03216374
2	35	-	40	89	0.26023392
З	40	-	45	77	0.22514620
4	45	-	50	113	0.33040936
5	50	-	55	47	0.13742690
6	55	-	60	5	0.01461988

Penguin Bill Length (mm)

Shape, including modality, symmetry, and skewness

- Shape, including **modality**, **symmetry**, and **skewness**
 - How many peaks (modes) are there: one is unimodal, two is bimodal, three or more is multimodal

- Shape, including **modality**, **symmetry**, and **skewness**
 - How many peaks (modes) are there: one is unimodal, two is bimodal, three or more is multimodal
 - Does the distribution look like a mirror image? If not, it is skewed.

- Shape, including **modality**, **symmetry**, and **skewness**
 - How many peaks (modes) are there: one is unimodal, two is bimodal, three or more is multimodal
 - Does the distribution look like a mirror image? If not, it is skewed.
 - Left (or negative) skew has a tail pointing left; right (or positive) skew has a tail pointing right.

- Shape, including **modality**, **symmetry**, and **skewness**
 - How many peaks (modes) are there: one is unimodal, two is bimodal, three or more is multimodal
 - Does the distribution look like a mirror image? If not, it is skewed.
 - Left (or negative) skew has a tail pointing left; right (or positive) skew has a tail pointing right.
- ► The **centre** of the distribution

- Shape, including **modality**, **symmetry**, and **skewness**
 - How many peaks (modes) are there: one is unimodal, two is bimodal, three or more is multimodal
 - Does the distribution look like a mirror image? If not, it is skewed.
 - Left (or negative) skew has a tail pointing left; right (or positive) skew has a tail pointing right.
- ► The **centre** of the distribution
- ► The **spread** of the distribution

- Shape, including **modality**, **symmetry**, and **skewness**
 - How many peaks (modes) are there: one is unimodal, two is bimodal, three or more is multimodal
 - Does the distribution look like a mirror image? If not, it is skewed.
 - Left (or negative) skew has a tail pointing left; right (or positive) skew has a tail pointing right.
- ► The **centre** of the distribution
- ► The **spread** of the distribution
- Outliers or deviations from the general pattern

Histograms: Comparing Distributions

Bar Charts: Histograms for Categorical Data

Raw data are difficult to interpret on their own.

Visualizations can help display the character of a distribution.

Stem-and-leaf plots, dot plots, and histograms are all useful for quantitative variables.

Histograms (as bar plots) can be used for categorical variables.